Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700774

RESUMO

Production of medium chain length polyhydroxyalkanoate (mcl-PHA) was attempted using Pseudomonas gessardii NIBRBAC000509957, which was isolated from Sunchang, Jeollabuk-do, Republic of Korea (35°24'27.7"N, 127°09'13.0"E) and effectively utilized acetate and formate as carbon sources. We first evaluated the utilization of acetate as a carbon source, revealing optimal growth at 5 g/L acetate. Then, formate was supplied to the acetate minimal medium as a carbon source to enhance cell growth. After overexpressing the acetate and formate assimilation pathway enzymes, this strain grew at a significantly higher rate in the medium. As this strain naturally produces PHA, it was further engineered metabolically to enhance mcl-PHA production. The engineered strain produced 0.40 g/L of mcl-PHA with a biomass content of 30.43% in fed-batch fermentation. Overall, this strain can be further developed to convert acetate and formate into valuable products.

2.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830075

RESUMO

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/biossíntese , Células-Tronco Mesenquimais/enzimologia , Nucleosídeo NM23 Difosfato Quinases/farmacologia , Neurônios/enzimologia , Sialiltransferases/antagonistas & inibidores , Animais , Humanos , Sialiltransferases/metabolismo , Suínos , Porco Miniatura
3.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34328827

RESUMO

Members of the family Thaspiviridae have linear dsDNA genomes of 27 to 29 kbp and are the first viruses known to infect mesophilic ammonia-oxidizing archaea of the phylum Thaumarchaeota. The spindle-shaped virions of Nitrosopumilus spindle-shaped virus 1 possess short tails at one pole and measure 64±3 nm in diameter and 112±6 nm in length. This morphology is similar to that of members of the families Fuselloviridae and Halspiviridae. Virus replication is not lytic but leads to growth inhibition of the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Thaspiviridae, which is available at ictv.global/report/thaspiviridae.


Assuntos
Archaea/virologia , Vírus de Archaea/classificação , Vírus de DNA/classificação , Vírus de Archaea/genética , Vírus de Archaea/fisiologia , Vírus de Archaea/ultraestrutura , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Vírion/ultraestrutura , Replicação Viral
4.
J Microbiol ; 59(3): 298-310, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33624267

RESUMO

The third domain Archaea was known to thrive in extreme or anoxic environments based on cultivation studies. Recent metagenomics-based approaches revealed a widespread abundance of archaea, including ammonia-oxidizing archaea (AOA) of Thaumarchaeota in non-extreme and oxic environments. AOA alter nitrogen species availability by mediating the first step of chemolithoautotrophic nitrification, ammonia oxidation to nitrite, and are important primary producers in ecosystems, which affects the distribution and activity of other organisms in ecosystems. Thus, information on the interactions of AOA with other cohabiting organisms is a crucial element in understanding nitrogen and carbon cycles in ecosystems as well as the functioning of whole ecosystems. AOA are self-nourishing, and thus interactions of AOA with other organisms can often be indirect and broad. Besides, there are possibilities of specific and obligate interactions. Mechanisms of interaction are often not clearly identified but only inferred due to limited knowledge on the interaction factors analyzed by current technologies. Here, we overviewed different types of AOA interactions with other cohabiting organisms, which contribute to understanding AOA functions in ecosystems.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Ecossistema , Nitrificação , Oxirredução , Filogenia
5.
ISME J ; 14(2): 335-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31624348

RESUMO

Consistent with the observation that ammonia-oxidizing bacteria (AOB) outnumber ammonia-oxidizing archaea (AOA) in many eutrophic ecosystems globally, AOB typically dominate activated sludge aeration basins from municipal wastewater treatment plants (WWTPs). In this study, we demonstrate that the growth of AOA strains inoculated into sterile-filtered wastewater was inhibited significantly, in contrast to uninhibited growth of a reference AOB strain. In order to identify possible mechanisms underlying AOA-specific inhibition, we show that complex mixtures of organic compounds, such as yeast extract, were highly inhibitory to all AOA strains but not to the AOB strain. By testing individual organic compounds, we reveal strong inhibitory effects of organic compounds with high metal complexation potentials implying that the inhibitory mechanism for AOA can be explained by the reduced bioavailability of an essential metal. Our results further demonstrate that the inhibitory effect on AOA can be alleviated by copper supplementation, which we observed for pure AOA cultures in a defined medium and for AOA inoculated into nitrifying sludge. Our study offers a novel mechanistic explanation for the relatively low abundance of AOA in most WWTPs and provides a basis for modulating the composition of nitrifying communities in both engineered systems and naturally occurring environments.


Assuntos
Archaea/crescimento & desenvolvimento , Cobre , Nitrificação , Águas Residuárias/microbiologia , Amônia/metabolismo , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Oxirredução , Esgotos/microbiologia , Purificação da Água
6.
PLoS One ; 14(8): e0221408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31449563

RESUMO

The Yellow Sea features unique characteristics due to strong tides and nutrient-enriched freshwater outflows from China and Korea. The coupling of archaeal and bacterial assemblages associated with environmental factors at two bay areas in the Yellow Sea was investigated. Temporal variations of the archaeal and bacterial assemblages were shown to be greater than the spatial variations based on an analysis of the 16S rRNA gene sequences. Distinct temporal dynamics of both planktonic archaeal and bacterial assemblages was associated with temperature, NO2-, and chlorophyll a ([chl-a]) concentrations in the bays of the Yellow Sea. The [chl-a] was the prime predictor of bacterial abundance, and some taxa were clearly correlated with [chl-a]. Bacteroidetes and Alpha-proteobacteria dominated at high [chl-a] stations while Gamma-proteobacteria (esp. SAR86 clade) and Actinobacteria (Candidatus Actinomarina clade) were abundant at low [chl-a] stations. The archaeal abundance was comparable with the bacterial abundance in most of the October samples. Co-dominance of Marine Group II (MGII) and Candidatus Nitrosopumilus suggests that the assimilation of organic nitrogen by MGII could be coupled with nitrification by ammonia-oxidizing archaea. The distinct temporal dynamics of the archaeal and bacterial assemblages might be attributable to the strong tides and the inflow of nutrient-rich freshwater.


Assuntos
Archaea/genética , Bactérias/genética , Monitoramento Ambiental , Filogenia , Archaea/classificação , Bactérias/classificação , Biodiversidade , China , Água Doce/microbiologia , Humanos , Nitrogênio/metabolismo , Oceanos e Mares , Plâncton/classificação , Plâncton/genética , RNA Ribossômico 16S/genética , República da Coreia , Água do Mar/microbiologia , Ondas de Maré
7.
Proc Natl Acad Sci U S A ; 116(31): 15645-15650, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311861

RESUMO

Ammonia-oxidizing archaea (AOA) from the phylum Thaumarchaeota are ubiquitous in marine ecosystems and play a prominent role in carbon and nitrogen cycling. Previous studies have suggested that, like all microbes, thaumarchaea are infected by viruses and that viral predation has a profound impact on thaumarchaeal functioning and mortality, thereby regulating global biogeochemical cycles. However, not a single virus capable of infecting thaumarchaea has been reported thus far. Here we describe the isolation and characterization of three Nitrosopumilus spindle-shaped viruses (NSVs) that infect AOA and are distinct from other known marine viruses. Although NSVs have a narrow host range, they efficiently infect autochthonous Nitrosopumilus strains and display high rates of adsorption to their host cells. The NSVs have linear double-stranded DNA genomes of ∼28 kb that do not display appreciable sequence similarity to genomes of other known archaeal or bacterial viruses and could be considered as representatives of a new virus family, the "Thaspiviridae." Upon infection, NSV replication leads to inhibition of AOA growth, accompanied by severe reduction in the rate of ammonia oxidation and nitrite reduction. Nevertheless, unlike in the case of lytic bacteriophages, NSV propagation is not associated with detectable degradation of the host chromosome or a decrease in cell counts. The broad distribution of NSVs in AOA-dominated marine environments suggests that NSV predation might regulate the diversity and dynamics of AOA communities. Collectively, our results shed light on the diversity, evolution, and potential impact of the virosphere associated with ecologically important mesophilic archaea.


Assuntos
Amônia/metabolismo , Organismos Aquáticos , Archaea , Bacteriófagos/fisiologia , DNA Arqueal , Replicação Viral , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Organismos Aquáticos/virologia , Archaea/genética , Archaea/metabolismo , Archaea/virologia , DNA Arqueal/genética , DNA Arqueal/metabolismo
8.
ISME J ; 13(10): 2633-2638, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31227816

RESUMO

Nitrous oxide (N2O) is a key climate change gas and nitrifying microbes living in terrestrial ecosystems contribute significantly to its formation. Many soils are acidic and global change will cause acidification of aquatic and terrestrial ecosystems, but the effect of decreasing pH on N2O formation by nitrifiers is poorly understood. Here, we used isotope-ratio mass spectrometry to investigate the effect of acidification on production of N2O by pure cultures of two ammonia-oxidizing archaea (AOA; Nitrosocosmicus oleophilus and Nitrosotenuis chungbukensis) and an ammonia-oxidizing bacterium (AOB; Nitrosomonas europaea). For all three strains acidification led to increased emission of N2O. However, changes of 15N site preference (SP) values within the N2O molecule (as indicators of pathways for N2O formation), caused by decreasing pH, were highly different between the tested AOA and AOB. While acidification decreased the SP value in the AOB strain, SP values increased to a maximum value of 29‰ in N. oleophilus. In addition, 15N-nitrite tracer experiments showed that acidification boosted nitrite transformation into N2O in all strains, but the incorporation rate was different for each ammonia oxidizer. Unexpectedly, for N. oleophilus more than 50% of the N2O produced at pH 5.5 had both nitrogen atoms from nitrite and we demonstrated that under these conditions expression of a putative cytochrome P450 NO reductase is strongly upregulated. Collectively, our results indicate that N. oleophilus might be able to enzymatically denitrify nitrite to N2O at low pH.


Assuntos
Amônia/metabolismo , Archaea/enzimologia , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Óxido Nitroso/metabolismo , Archaea/classificação , Archaea/genética , Proteínas Arqueais/genética , Desnitrificação , Ecossistema , Concentração de Íons de Hidrogênio , Nitritos/metabolismo , Nitrosomonas europaea , Oxirredução , Microbiologia do Solo
10.
Microbiome ; 7(1): 29, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30786927

RESUMO

BACKGROUND: Polynyas in the Southern Ocean are regions of intense primary production, mainly by Phaeocystis antarctica. Carbon fixed by phytoplankton in the water column is transferred to higher trophic levels, and finally, to the deep ocean. However, in the Amundsen Sea, most of this organic carbon does not reach the sediment but is degraded in the water column due to high bacterial heterotrophic activity. RESULTS: We reconstructed 12 key bacterial genomes from different phases of bloom and analyzed the expression of genes involved in organic carbon remineralization. A high correlation of gene expression between the peak and decline phases was observed in an individual genome bin-based pairwise comparison of gene expression. Polaribacter belonging to Bacteroidetes was found to be dominant in the peak phase, and its transcriptional activity was high (48.9% of the total mRNA reads). Two dominant Polaribacter bins had the potential to utilize major polymers in P. antarctica, chrysolaminarin and xylan, with a distinct set of glycosyl hydrolases. In the decline phase, Gammaproteobacteria (Ant4D3, SUP05, and SAR92), with the potential to utilize low molecular weight-dissolved organic matter (LMW-DOM) including compatible solutes, was increased. The versatility of Gammaproteobacteria may contribute to their abundance in organic carbon-rich polynya waters, while the SAR11 clade was found to be predominant in the sea ice-covered oligotrophic ocean. SAR92 clade showed transcriptional activity for utilization of both polysaccharides and LMW-DOM; this may account for their abundance both in the peak and decline phases. Ant4D3 clade was dominant in all phases of the polynya bloom, implicating the crucial roles of this clade in LMW-DOM remineralization in the Antarctic polynyas. CONCLUSIONS: Genomic reconstruction and in situ gene expression analyses revealed the unique metabolic potential of dominant bacteria of the Antarctic polynya at a finer taxonomic level. The information can be used to predict temporal community succession linked to the availability of substrates derived from the P. antarctica bloom. Global warming has resulted in compositional changes in phytoplankton from P. antarctica to diatoms, and thus, repeated parallel studies in various polynyas are required to predict global warming-related changes in carbon remineralization.


Assuntos
Carbono/metabolismo , Perfilação da Expressão Gênica/métodos , Haptófitas/crescimento & desenvolvimento , Metagenômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Diatomáceas/microbiologia , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Regulação Bacteriana da Expressão Gênica , Haptófitas/metabolismo , Haptófitas/microbiologia , Filogenia , Fitoplâncton/metabolismo , Fitoplâncton/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Artigo em Inglês | MEDLINE | ID: mdl-30533919

RESUMO

Here, we report the draft genome sequence of "Candidatus Izimaplasma sp." strain ZiA1 (1.88 Mb and 29.6% G+C content). Strain ZiA1 was cocultured with iron-reducing and toluene-degrading bacteria in an enrichment culture from tidal flat sediment. Like the genomes of other strains of "Ca. Izimaplasma," the ZiA1 genome contained genes required for anaerobic fermentation.

12.
Front Microbiol ; 9: 1982, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210468

RESUMO

Soil acidification is accelerated by anthropogenic and agricultural activities, which could significantly affect global methane cycles. However, detailed knowledge of the genomic properties of methanotrophs adapted to acidic soils remains scarce. Using metagenomic approaches, we analyzed methane-utilizing communities enriched from acidic forest soils with pH 3 and 4, and recovered near-complete genomes of proteobacterial methanotrophs. Novel methanotroph genomes designated KS32 and KS41, belonging to two representative clades of methanotrophs (Methylocystis of Alphaproteobacteria and Methylobacter of Gammaproteobacteria), were dominant. Comparative genomic analysis revealed diverse systems of membrane transporters for ensuring pH homeostasis and defense against toxic chemicals. Various potassium transporter systems, sodium/proton antiporters, and two copies of proton-translocating F1F0-type ATP synthase genes were identified, which might participate in the key pH homeostasis mechanisms in KS32. In addition, the V-type ATP synthase and urea assimilation genes might be used for pH homeostasis in KS41. Genes involved in the modification of membranes by incorporation of cyclopropane fatty acids and hopanoid lipids might be used for reducing proton influx into cells. The two methanotroph genomes possess genes for elaborate heavy metal efflux pumping systems, possibly owing to increased heavy metal toxicity in acidic conditions. Phylogenies of key genes involved in acid adaptation, methane oxidation, and antiviral defense in KS41 were incongruent with that of 16S rRNA. Thus, the detailed analysis of the genome sequences provides new insights into the ecology of methanotrophs responding to soil acidification.

13.
Int J Syst Evol Microbiol ; 68(10): 3084-3095, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30124400

RESUMO

A mesophilic, chemolithoautotrophic, neutrophilic and aerobic ammonia-oxidizing archaeon, designated strain MY1T, was isolated from agricultural soil. Microscopic observation revealed short, rod-shaped cells with a diameter of 0.3-0.5 µm and length of 0.6-1.0 µm. The isolate had no flagella and pili, and possessed no genes associated with archaeal flagella synthesis. The major membrane lipids consisted mainly of the glycerol dibiphytanyl glycerol tetraether (GDGT) lipids GDGT-0 to GDGT-4 and crenarchaeol. The major intact polar lipids (IPLs) were determined as hexose plus phosphohexose IPL and dihexose IPL. Strain MY1T obtains energy by aerobically oxidizing ammonia and carbon by fixing CO2. An optimal growth was observed at 25 °C, at pH 7 and with 0.2-0.4 % (w/v) salinity that corresponds with its terrestrial habitat. The addition of α-keto acids was necessary to stimulate growth. The strain tolerated ammonium and nitrite concentrations up to 10 and 5 mM, respectively. The MY1T genome has a DNA G+C content of 32.7 mol%. Phylogenetic analysis based on the 16S rRNA gene showed that strain MY1T belongs to the family Nitrosopumilaceaeof the phylum Thaumarchaeota, sharing the highest 16S rRNA gene sequence similarity (96.6-97.1 %) with marine isolates of the genus Nitrosopumilus. The average nucleotide identity was 78 % between strain MY1T and Nitrosopumilus maritimus SCM1T, indicating distant relatedness. Based on the phenotypic, phylogenetic and genomic analyses, it was concluded that strain MY1T belongs to the novel genus Nitrosarchaeum, under which the name Nitrosarchaeum koreense sp. nov. is proposed as the type species. The type strain is MY1T (=JCM 31640T=KCTC 4249T).


Assuntos
Amônia/metabolismo , Archaea/classificação , Filogenia , Microbiologia do Solo , Agricultura , Archaea/genética , Archaea/isolamento & purificação , Composição de Bases , Genes Arqueais , Éteres de Glicerila/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Solo/química
14.
J Microbiol ; 56(5): 365-371, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29721834

RESUMO

Members of the family Clostridiaceae within phylum Firmicutes are ubiquitous in various iron-reducing environments. However, genomic data on iron-reducing bacteria of the family Clostridiaceae, particularly regarding their environmental distribution, are limited. Here, we report the analysis and comparison of the genomic properties of Geosporobacter ferrireducens IRF9, a strict anaerobe that ferments sugars and degrades toluene under iron-reducing conditions, with those of the closely related species, Geosporobacter subterraneus DSM 17957. Putative alkyl succinate synthase-encoding genes were observed in the genome of strain IRF9 instead of the typical benzyl succinate synthase-encoding genes. Canonical genes associated with iron reduction were not observed in either genome. The genomes of strains IRF9 and DMS 17957 harbored genes for acetogenesis, that encode two types of Rnf complexes mediating the translocation of H+ and Na+ ions, respectively. Strain IRF9 harbored two different types of ATPases (Na+-dependent F-type ATPase and H+-dependent V-type ATPase), which enable full exploitation of ion gradients. The versatile energy conservation potential of strain IRF9 promotes its survival in various environmental conditions.


Assuntos
Clostridiaceae/genética , Clostridiaceae/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Genoma Bacteriano/genética , Genômica , Adenosina Trifosfatases , Sequência de Aminoácidos , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Sequência de Bases , Clostridiaceae/classificação , Clostridiaceae/enzimologia , DNA Bacteriano/genética , Fermentação , Firmicutes/classificação , Firmicutes/genética , Genes Bacterianos/genética , Genes de RNAr/genética , Ferro/metabolismo , Filogenia , Alinhamento de Sequência , Açúcares/metabolismo
15.
Int J Syst Evol Microbiol ; 68(7): 2258-2264, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29809120

RESUMO

Strain GI5T was isolated from a surface seawater sample collected from Garorim Bay (West Sea, Republic of Korea). The isolated strain was aerobic, Gram-stain-negative, rod-shaped, motile by means of a polar flagellum, negative for catalase and weakly positive for oxidase. The optimum growth pH, salinity and temperature were determined to be pH 7.5-8.0, 3 % NaCl (w/v) and 25 °C, respectively; the growth ranges were pH 6.0-9.0, 1-7 % NaCl (w/v) and 18-40 °C. The results of phylogenetic analysis of 16S rRNA gene sequences indicated that GI5T clustered within the family Alcanivoracaceae, and most closely with Alcanivorax dieseloleiB-5T and Alcanivorax marinusR8-12T (91.9 % and 91.6 % similarity, respectively). The major cellular fatty acids in GI5T were C18 : 1ω7c/C18 : 1ω6c (44.45 %), C16 : 1ω6c/C16 : 1ω7c (14.17 %) and C16 : 0 (10.19 %); this profile was distinct from those of the closely related species. The major respiratory quinone of GI5T was Q-8. The main polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Two putative alkane hydroxylase (alkB) genes were identified in GI5T. The G+C content of the genomic DNA of GI5T was determined to be 51.2 mol%. On the basis of the results of phenotypic, chemotaxonomic and phylogenetic studies, strain GI5T represents a novel species of a novel genus of the family Alcanivoracaceae, for which we propose the name Ketobacter alkanivorans gen. nov., sp. nov.; the type strain is GI5T (=KCTC 52659T=JCM 31835T).


Assuntos
Alcanivoraceae/classificação , Alcanos/metabolismo , Filogenia , Água do Mar/microbiologia , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
16.
J Microbiol ; 55(10): 775-782, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28956349

RESUMO

Aerobic methane oxidation is a key process in the global carbon cycle that acts as a major sink of methane. In this study, we describe a novel methanotroph designated EMGL16-1 that was isolated from a freshwater lake using the floating filter culture technique. Based on a phylogenetic analysis of 16S rRNA gene sequences, the isolate was found to be closely related to the genus Methylomonas in the family Methylococcaceae of the class Gammaproteobacteria with 94.2-97.4% 16S rRNA gene similarity to Methylomonas type strains. Comparison of chemotaxonomic and physiological properties further suggested that strain EMGL16-1 was taxonomically distinct from other species in the genus Methylomonas. The isolate was versatile in utilizing nitrogen sources such as molecular nitrogen, nitrate, nitrite, urea, and ammonium. The genes coding for subunit of the particulate form methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), and methanol dehydrogenase (mxaF) were detected in strain EMGL16-1. Phylogenetic analysis of mmoX indicated that mmoX of strain EMGL16-1 is distinct from those of other strains in the genus Methylomonas. This isolate probably represents a novel species in the genus. Our study provides new insights into the diversity of species in the genus Methylomonas and their environmental adaptations.


Assuntos
Methylomonas/enzimologia , Methylomonas/genética , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Oxirredutases do Álcool/genética , Técnicas de Tipagem Bacteriana , Sequência de Bases , Carbono/metabolismo , DNA Bacteriano/genética , Água Doce/microbiologia , Genes Bacterianos/genética , Metano/metabolismo , Methylococcaceae/classificação , Methylomonas/classificação , Methylomonas/isolamento & purificação , Nitrogênio , Fixação de Nitrogênio , Oxigenases/classificação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Microbiologia da Água
17.
Int J Syst Evol Microbiol ; 67(7): 2397-2402, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708058

RESUMO

A taxonomic study was conducted on strain soj2014T, which was isolated from the surface water of a polynya in the Antarctic Sea. Comparative 16S rRNA gene sequence analysis showed that strain soj2014T belongs to the family Kiloniellaceae and is closely related to Kiloniella spongiae MEBiC09566T, 'Kiloniella litopenaei' P1-1T and Kiloniella laminariae LD81T (98.0 %, 97.8 % and 96.2 % 16S rRNA gene sequence similarity, respectively). The DNA-DNA hybridization values between strain soj2014T and closely related strains were below 28.6 %. The G+C content of the genomic DNA of strain soj2014T was 45.5 mol%. The predominant cellular fatty acids were summed feature 8 (composed of C18 : 1ω6c/C18 : 1ω7c, 57.0 %) and summed feature 3 (composed of C16 : 1ω6c/C16 : 1ω7c, 23.5 %). Strain soj2014T was Gram-stain-negative, slightly curved, spiral-shaped, and motile with a single polar flagellum. The strain grew at 0-30 °C (optimum, 25 °C), in 1.5-5.1 % (w/v) NaCl (optimum, 2.1-2.4 %) and at pH 5.5-9.5 (optimum, 7.5-8.0). It also had differential carbohydrate utilization traits and enzyme activities compared with closely related strains. Based on these phylogenetic, phenotypic and chemotaxonomic analyses, strain soj2014T represents a distinct species, separable from the reference strains, and is, therefore, proposed as a novel species, Kiloniella antarctica sp. nov. The type strain is soj2014T (=KCTC 42186T=JCM 30386T).


Assuntos
Alphaproteobacteria/classificação , Filogenia , Água do Mar/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Environ Microbiol Rep ; 8(6): 983-992, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27700018

RESUMO

A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.


Assuntos
Amônia/metabolismo , Archaea/isolamento & purificação , Archaea/metabolismo , Microbiologia Ambiental , Archaea/classificação , Archaea/citologia , Carbono/metabolismo , Alcatrão , Poluentes Ambientais , Oxirredução , Filogenia
19.
Proc Natl Acad Sci U S A ; 113(28): 7888-93, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27339136

RESUMO

Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 µM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes.


Assuntos
Amônia/metabolismo , Archaea/fisiologia , Peróxido de Hidrogênio/metabolismo , Archaea/isolamento & purificação , Genoma Bacteriano , Nitrificação , Oxirredução , Peroxidase/metabolismo
20.
J Microbiol ; 54(6): 413-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27225457

RESUMO

A strictly anaerobic bacterium, strain B5(T), was isolated from sediment of an abandoned coal mine in Taebaek, Republic of Korea. Cells of strain B5(T) were non-spore-forming, straight, Gram-positive rods. The optimum pH and temperature for growth were pH 7.0 and 30°C, respectively, while the strain was able to grow within pH and temperature ranges of 5.5-7.5 and 25-45°C, respectively. Growth of strain B5(T) was observed at NaCl concentrations of 0 to 6.0% (w/v) with an optimum at 3.0-4.0% (w/v). The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and three unknown polar lipids. Strain B5(T) grew anaerobically by reducing nitrate, nitrite, ferric-citrate, ferric-nitrilotriacetate, elemental sulfur, thiosulfate, and anthraquinone-2-sulfonate in the presence of proteinaceous compounds, organic acids, and carbohydrates as electron donors. The isolate was not able to grow by fermentation. Strain B5(T) did not grow under aerobic or microaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B5(T) is most closely related to the genus Tepidibacillus (T. fermentans STGH(T); 96.3%) and Vulcanibacillus (V. modesticaldus BR(T); 94.6%). The genomic DNA G+C content (36.9 mol%) of strain B5(T) was higher than those of T. fermentans STGH(T) (34.8 mol%) and V. modesticaldus BR(T) (34.5 mol%). Based on its phenotypic, chemotaxonomic, and phylogenetic properties, we describe a new species of a novel genus Calculibacillus, represented by strain B5(T) (=KCTC 15397(T) =JCM 19989(T)), for which we propose the name Calculibacillus koreensis gen. nov., sp. nov.


Assuntos
Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Compostos Férricos/metabolismo , Sedimentos Geológicos/microbiologia , Bacillaceae/classificação , Bacillaceae/genética , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Mineração , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA